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J .  Phys. A: Math. Gen. 19 (1986) 903-917. Printed in Great Britain 

Atoms in multi-mode radiation fields 

H G Muller and A Tip 
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The 
Netherlands 

Received 24 June 1985 

Abstract. The Floquet formalism for atoms in semiclassical monochromatic radiation fields 
has recently been extended to the multi-mode case by Chu and co-workers. In the present 
work we generalise a version of the Floquet formalism for the single-mode case originated 
by Howland to the multi-mode situation and give expressions for multi-photon ionisation 
amplitudes in the spirit of time-independent scattering theory. A comparison is made with 
the corresponding second quantised formalism. 

1. Introduction 

It sometimes happens that the time development of a closed physical system can be 
described in an approximate but still fairly accurate way in terms of the time develop- 
ment of a subsystem which is generated by a time-dependent Hamiltonian. The 
advantage is that one is now dealing with a system associated with a smaller Hilbert 
space (in the quantum case; in the classical case a smaller phase space), the trade-off 
being the time dependence of the Hamiltonian, which prevents the use of the well 
developed formalism of time-independent perturbation theory. As examples we men- 
tion the impact parameter method used for the description of electron-detachment 
processes in atomic collisions and the semiclassical method applied to atomic processes 
in (strong) radiation fields. In the first case the relative motion of the heavy particles 
is given by a prescribed classical orbit whereas in the second the radiation field is a 
prescribed external field. In both examples we encounter the typical situation where 
the influence of one subsystem on the other is strong but the converse influence is 
weak. Thus, in the first case, the heavy particle motion strongly influences the active 
electron but the behaviour of the electron does not affect the heavy particle motion 
appreciably. In the second case the state of an atom is significantly changed by the 
absorption of a number of photons but the state of the field (for instance a coherent 
one) remains nearly the same. 

Starting from the classical concept of treating energy and time as canonical variables 
for non-conservative systems, Howland ( 1974, 1979) developed a corresponding quan- 
tum mechanical theory leading to a time-independent Hamiltonian but on a larger 
Hilbert space. In the first paper he considered the general situation, whereas in the 
second the Hamiltonian is assumed to be periodic in time which leads to a Floquet 
reduction. The special case of an atom in a periodic time-dependent field was studied 
by a number of authors (Yajima 1982, Howland 1983, Tip 1983, Graffi et a1 1984, 
Graffi 1984). 

0305-4470/86/060903 + 15$02.50 @ 1986 The Institute of Physics 903 



904 H G Muller and A Tip 

In actual experiments concerning atoms in external radiation fields it sometimes 
happens that two independent photon sources (lasers) are used and the above formalism 
ceases to be applicable. Starting from Shirley's version of the Floquet formalism 
(Shirley 1965), Chu and co-workers (Chu et a1 1983, Ho and Chu 1984,1985) developed 
an extension to the multi-mode situation which they applied to a number of physical 
processes. 

In the present paper we discuss how Howland's method can be adapted to incorpor- 
ate such more general situations. Basically it amounts to the multiple time scale method 
(see Langhoff et ai 1972) converted to the energy domain. As a starting point we 
suppose that the time development of the system under consideration is governed by 
a time-dependent Hamiltonian 

H ( t )  = H ( f , ( w , t ) ,  . . . , . L ( w ~ ~ ) ) ,  (1.1) 

with associated unitary time-evolution operator U (  t ,  s)  ( U (  t, t )  = 1, Vt  E R) both acting 
in the Hilbert space X. Here the functions f;( * ) are supposed to be smooth, periodic 
or non-periodic. We now consider the auxiliary system (again in 2') with Hamiltonian 
( w  = { w , , .  . . , w N }  and y = {y , ,  . . . , y N }  are in 3 ") 

(1.2) 

with associated time-evolution operator U (  t ,  s, y ) .  
Assuming continuity in y we retrieve the true time-evolution operator by setting 

y = 0. We now consider y as a set of new dynamical variables, i.e. as a set of coordinates 
and introduce a set of conjugate momenta q = { q , ,  . . . , q N } ,  q, = -iaj,. Here we have 
to be specific about the ranges of the y,. In case &(y,)  is periodic with period 277 we 
take q, = -ia, with periodic boundary conditions in 0 and 2rr which makes q, self- 
adjoint with spectrum Z on %', = Lz([O, 25~1, dy,). If J;(y,)  is defined for every real y, 
and not periodic we take %', = L2(R, dy,) so that q, is essentially self-adjoint on %',. 
We denote its closure again by q,. In the periodic case the pair {y,, q,} is not canonical 
in the usual sense but this is of no consequence in the following. We now denote 
X0 =@El %', and X = ZOO X and consider H (  t, y )  as an operator acting in YL Now, 
formally, 

H ( t , y )  = H ( . f , ( y , + w , t ) ,  . . * , f N ( Y Y + W N f ) ) =  H ( y + o r ) ,  

H ( y  + ut) = exp(iw * q t ) H ( y )  exp( -iw q t ) ,  (1.3) 

and we can interpret (1.3) as the interaction representation associated with the Hamil- 
tonian 

K = w * q + H ( y ) ,  (1.4) 
acting in X .  We note that in the multi-periodic case ( N >  1) the spectrum of o. q is 
either a dense point spectrum (if at least two w, are incommensurate) or an  infinite 
set of equidistant eigenvalues of infinite degeneracy (wJ = nJwo, nJ E H, wo real). Now 

U (  t, s, y )  = exp( io  q t )  exp[ -iK( t - s)] exp( - i o .  q s ) ,  (1.5) 
and 

exp(- iKt)=exp(- io .qt)U(t ,O,y)= U ( 0 ,  - t , y )  exp(- io .q t ) ,  (1.6) 

where the last line is obtained from 

exp(- io .qu)U( t ,O,y)  e x p ( i o . q u ) =  U ( t , O , y - w u ) =  U ( t - u ,  - u , y ) ,  

due to the definition of H( t, y ) .  
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Equation (1.6) differs from Howland’s definition of K in that he defines ( N  = 1, 

exp(--iKu)= U(t,O)exp(-iqu)U(O, t )=exp(- iqu)U(t+u,  t ) .  (1.7) 

It is precisely this slight change in definition that leads to the greater flexibility of the 
present approach. According to the multiple time scale method the time variable is 
replaced by a set { t ,  = &,t} (Langhoff et a1 1972), In our case w,d ,  is one of the new 
time derivatives, i.e. E, = w; ’ ,  and in fact we are dealing with a Hilbert space version 
of this approach. In the following we shall give a precise meaning to the above formal 
manipulations for the case of a one-electron atom in a spatially homogeneous multi- 
mode field. The starting point is the propagator properties and continuity in y of 
U (  t ,  s, y ) .  It then follows that the right-hand side of (1.6) defines a strongly continuous 
unitary group of operators acting in X so that K is defined as a self-adjoint operator 
acting in Yl. This is done in § 2 starting from (in atomic units) 

(1.8) 

where A (  t )  is the vector potential, p the momentum operator and V ( x )  the potential, 
the underlying Hilbert space being X = L2(R3, dx). This approach does not give much 
information about the domain 9 of K but in ?j 3 we obtain more detailed information 
about 9 under suitable conditions on V ( x ) ,  treated as a perturbation. We consider 
vector potentials of the type 

y = t ,  q = -idl, U real) 

H( t )  = f ( p  - A (  t ) ) ’ +  V(X),  

N 

A( t, y )  = a, cos(w,t + y,) = A ( y  + ut), 
, = I  

with a, E R3, y, E [ 0 , 2 ~ ]  and w, > 0 (w, < O  is allowed but no generality is lost by 
requiring w, > 0). Thus U, is the amplitude of the j th  field mode, w, its frequency and 
y, its phase. In an actual experiment the phases of the different modes are usually 
uncorrelated and the initial value of y is different from one measurement to another, 
i.e. the y, occur as random variables. Thus in the present case the y, are not artificial 
parameters but have a physical meaning. In the case when one field mode is obtained 
from another by frequency doubling (or higher multiplication) then the corresponding 
phases remain correlated and only one phase parameter y, should be attached to both 
modes, whereas the corresponding cosine function in (1.9) has to be replaced by a 
more complicated periodic function with the same fundamental frequency. 

In § 4 we discuss, without going into mathematical details, the connection between 
the present formalism and actual measurable quantities such as they occur, for instance, 
in multi-photon ionisation. 

The paper ends with a discussion section where we raise the question as to what 
has been gained by first going to an approximate formulation on a smaller Hilbert 
space and then going back to a larger one. In the case at hand the present procedure 
can be compared directly with that of a finite number of radiation modes in second 
quantisation (Grossmann and Tip (1980) studied this model for hydrogen in a single 
mode; for further results see also Perry (1983)). 

2. One-electron atoms in a multi-mode field 

We consider a system where a particle (electron) is moving in a potential t ( x )  which 
is either the Coulomb potential (hydrogen atom H, He+, in the Born-Oppenheimer 
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approximation with spin neglected) or  an  effective potential representing the combined 
action of the nucleus and the core electrons on the active electron (Li, Na, etc). Thus 
on %'= L2(R3 ,  dx)  = L2 

H a ' = f p * +  V ( x ) ,  (2 .1)  

where i p 2  with domain 9 is the closure of -fa: and V ( x )  E Lp+L',  p z 2 ,  real, so 
that V ( x )  is ip2-bounded with zero relative bound and Ha' with domain 9 is self- 
adjoint. The Hamiltonian for the atom in the field A( t ,  y )  is now ( p  is the closure of 
-iax) 

H (  t ,  y )  = f [ p  - A( t ,  y ) ] * +  V(X) = H ( y +  w t ) ,  ( 2 . 2 )  

which is again self-adjoint with domain 9. The associated time-evolution operator 
U(?,  s, y )  is the solution of 

d,U(t ,  s , y )  = - iH( t ,y )U( t ,  S , Y ) ,  U (  t, t, y )  = 1 .  ( 2 . 3 )  
U ( t ,  s, y )  is uniquely defined by (2.3) for each y ,  is unitary and strongly continuous 
in t and s (see Kat0 (1970); for his auxiliary space 9 we take 9 equipped with the 
graph norm). It can be seen by considering Kato's construction of the propagator 
U ( t ,  s , y ) ,  i.e. it is in addition strongly continuous in y .  We note further that, since 
H ( t , y + a w ) =  H ( t + a , y ) ,  

U ( t ,  s , y + a w ) =  U ( t + a ,  s + a , y ) .  (2.4) 
Splitting y according to 

-id,.,U(t, s , y ) f =  - w - ' [ H ( t , y ) U ( t ,  s , y ) f -  U ( [ ,  s , y ) H ( s , y l f l .  ( 2 . 8 )  
We now introduce X as discussed in the introduction. Thus 3 = L2( [0 ,  2 ~ 1 ,  dy,), 
q, = -id,,, with periodic boundary conditions so that q, has spectrum Z and the eigen- 
function associated with n E Z is &(y,)  = ( 2 ~ ) - " ~  exp(iny,). It follows that T = w q, 
q = {9 , ,  . . . , qN} is self-adjoint on 2Yo=@E,q and has pure point spectrum, its 
eigenvalues being A, = w * n, n E ZN. {exp(iTt)lt E R} defines a unitary group on 2Yo 
and for f (y)  E 3Yo, [exp(iTt)fl(y) = f ( y +  wt + U )  where U E ( 2 ~ i 2 ) ~  is such that yJ + wJt + 
uJ E [0,27r). @ ( y )  E L"(RN, dy)  defines a bounded multiplication operator on 3Yo and 
exp(iTt)@(y) exp(-iTt) = @ ( y + w t +  U) with U as before. In the following we omit U 
if no confusion can arise. exp(i Tt)  0 1% defines a unitary, strongly continuous group 
on X= 2YoC32Y which we again denote by exp(iTt). U (  t ,  s , y )  defines a family of 
unitary operators on X which is multiplicative as far as its action in 3Yo is concerned. 
We now define the unitary operator W (  t )  on X for each t E R by 

W (  t )  = exp( -i Tt)  U (  t ,  0,  y )  = U (  t ,  0,  y - ut) exp( -iTt) 

= U(0 ,  - t ,  y )  exp( -i Tt ) ,  (2.9) 
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where (2.4) has been used. Again using (2.5) and the propagator property U (  t, s, y )  = 
U (  t, U ,  y )  U (  U ,  s, y ) ;  t, s, U E R  (see Kat0 1980) we find that 

exp[- iT(t l+t2) lU(t l+ t2 ,0,y)  

= exp( -i Tt,) U (  t ,  + t , ,  0, y - ut,) exp( -i Tt,) 

= exp( -i Tt,) U (  t l ,  - t2 ,  y )  exp( -i Tt,) 

=exp(- iTt , )U(t , ,  O,y)U(O,  - f 2 , y )  exp(-iTt,) 

= exp(-iTtl) U(t,,  0, Y )  exp(-i%) U(f , ,  0, y ) ,  

i.e. W ( t )  has the group property. Since it is also strongly continuous in t Stone's 
theorem can be applied and we have W ( t )  = exp(-iKt) with K self-adjoint on Yl. 

Proposition 2.1. The dense set 2 , = ( ~ d ( T ) O ~ ) n ( ~ , o ~ ) ) c r t i s  a core of K. 

R o o t  Let f E 9, and g (  t )  = exp(-iKt)f: Then Ilp2g( t)ll = lip2 U (  t ,  s, y ) f l / <  CD since 
U (  t, s, y )  is a bounded operator on 2 equipped with the graph norm (Kato 1970) and 
similarly, using (2.81, / /  Tg(t)ll = [/o qU( t, s, y ) f ( l  S l /au.y U ( t ,  s, y ) f l / +  1 1  Tfll <CO so that 
g ( t )  = 9,. Consequently 9, is a core of K (Reed and Simon 1972, theorem VI11 10). 

Proposition 2.1 is a simple extension of a result by Graffi et a1 (1984). Since, for 
f E 9 0 ,  

a I exp( -i K t  ) f  = -i T ex p( -i K t  ) f - i exp( -i Tt ) H ( t ,  y ) U ( t, s, y ) f  

= -i( T +  H ( y ) )  exp( -iKt)f, (2.10) 

where H ( y )  = H ( 0 ,  y ) ,  it follows that T + H ( y )  is essentially self-adjoint on 9, with 
closure K. 

At this point it is convenient to switch to the Kramers representation (Kramers 
1950). Thus we introduce the Hertz vector ( A (  t )  = a,Z( t, 0 ) )  

N 

Z ( ~ , Y )  = C a, s i n ( w , t + ~ ~ , ) / w , ,  a y )  = a o ,  Y ) ,  (2.11) 
I = ,  

and the function 

1 
Y ( t, y ) = 4 a, - a, ( w,  + U, ) -I sin[ ( w,  + w, t + y ,  + y, ] 

I . ,  = 1 

(2.12) 
wi  + w, 

Y b )  = *(O, Y ) .  
Let now 

M ( f )  = M ( t, P, Y )  = P Z (  t, Y )  - U'( f, Y ) ,  (2.13) 
M (  t )  defines a self-adjoint operator on Yrt with time-dependent domain. Note, however, 
that 

(2.14) 

M = M ( P ,  Y )  = M(O, P, Y ) .  

M (  t )  = exp(i T t ) M  exp( -i Tt). 

We now consider the free (i.e. V =  0) evolution operator 

exp(-iK,t) =exp(-iTr)U,(t, O , y ) ,  (2.15) 
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where U,( t, s, y )  is the propagator associated with Ho( t )  = & [ p  - A (  t ,  y ) ] ' .  Explicitly 

U,( t, 0, y )  = exp -i dsHo( s) ( lo' ) 
= exp[-i(ip2+ C)t]  exp[- i (M-M(t))I ,  (2.16) 

where 

(2.17) 

defines a Hermitian (=bounded, self-adjoint) operator on Yl, which commutes with 
T. Now, using (2.14), 

exp(-iKot) = exp(-iTt) exp[-i(ip2+ C)t]  exp(iM(t))  exp(-iM) 

= exp(-iTt) exp[-i(ip2+ C ) t ]  exp(iTt) exp(iM) exp(-iTt) exp(-iM) 

= exp(iM) exp[-i(T+&p2+ c)t] exp(-iM), (2.18) 

so that KO and 

io= T + i p 2 +  C = KO+ C (2.19) 

are unitarily equivalent. (As T and i p 2  are self-adjoint, acting in Xo,  respectively in 
y, their direct sum defines a unique self-adjoint operator KO in X. Since C is Hermitian 
KO is well defined.) 

A special situation occurs if w ,  = wI for some i # j (two uncorrelated laser beams 
with the same frequency). Disregarding the constant terms in C for the moment, we 
can decompose To+ C into groups 

But now 

(2.20) 

(2.21) 

By relabelling the y, we thus find that KO is unitarily equivalent to ( N O S  N )  

where D is a real bounded function of yNo+,, . . . , y,. In the special case that N = 2 
and w ,  = w 2  = w,  we have 

io = ;p2+ wq, +;(a:+  a:+ 2a, * a, cos y d .  (2.23) 

Thus the effect of coinciding wj is that a representation can be found where less than 
N qj occur in the free generator (but there are additional exp(iy,q,), (Y # p ,  in the 
original representation). We now define 

(2.25) 
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f i ( t , y ) ,  which is again self-adjoint with domain 9, is the Kramers representation of 
the full Hamiltonian. Apart from C (w! ich has important consequences in terms of 
a shift of the ionisation potential (see Muller et al 1983, Muller and Tip 1984, Tip 
1984)) the action of the field has been moved to the potential. Z (  t ,  y )  being bounded, 
this has the advantage that, apart from C, the influence of the field is absent for large 
dlstances, which is a convenient feature in numerical investigations. We now introduce 
K through 

(2.26) 

In the same way as before (for K )  we find that Z? is the self-adjoint closure of 
T + i p 7 +  C + V ( x  - Z ( y ) ) ,  defined on go. Thus, on SO, 

(2.27) 

For bounded V ( x )  I? is self-adjoint with domain 2(I?,) but for more general potentials 
the situation can be more complicated as will be discussed in $ 3 .  We can also consider 
the original operator K .  On 3O we can split it according to 

(2.28) 

Here ~ A ( Y ) ~  is bounded and causes no problems but wen for V =  0 - p *  A ( y )  is not a 
perturbation of K,  with relative bound smaller than one. This is related to the 
circumstance that T is not bounded from below. 

In conclusion we note tha: in the case of coinciding frequencies the development 
(2.20)-(2.22) also works for K. On 9, we simply have k = ko+ V(X- Z ( y ) ) .  

exp(-ikt)  = exp(-iTt) C(t ,  0 , ~ ) .  

1 1  

K = KO+ V(X - Z ( y ) )  = R o t  C + V(X - Z ( y ) )  = R + C. 

K = T + H " ' - p *  A ( y ) + ; A ( y ) ' =  K , - p *  A ( y ) + $ A ( y ) ' .  

3. Relative boundedness properties of V 

In this section we turn to the question of whether V = V ( x  - Z ( y ) )  in 8 = 8,+ V can 
be interpreted as a perturbation of 8, or, alternatively, since C is bounded, of 
ko= T + j p 2 .  This will turn out to be the case although, depending on the local 
singularities of V,  there are situations where V has no simple ko-boundedness proper- 
ties but the construction through the pseudo-Friedrichs extension (Kato 1966, Faris 
1975) has to be used instead. We start with the derivation of an operator estimate. 
Let A ER, p > 0 and cy > 0. Then 

+a2 

( A 2 + p ' ) - -  = (27r ) - ' I 2  dtF , (p ,  t )  exp(iAt), (3.1) I-, 
where 

Fa(p, t )  = ( 2 ~ ) - " ~  dA(A2+p2)-" exp(-iht) 

= (2/ T)1'2p'-2uga ( p t ) ,  

with (Magnus et al 1966, p 85) 
r m  

g , ( u )  = J dA(A2+ l)--  cos(Au) = ~ " 2 ( u / 2 ) u - 1 ' 2 ~ ( c y ) - 1 K ~ - , , z ( u ) ,  (3.3) 
0 

U )  being a modified Bessel function. By partial integration 
m 

g a ( v ) = ( 2 c y / u )  1 d A A ( A 2 + l ) - a - l  sin(Au), UZO 
0 

(3.4) 
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so that 

Ig , (u) ls(aa/ lul)  ~ o m d A A ( A 2 + l ) - ~ - 1 = ~ u ~ - ’ ,  U # 0. (3.5) 

We note further that for a > 4, g,( U )  is continuous in U ;  for a st ,  go( U )  is continuous 
outside U = 0 and [g, ( U ) [  behaves as I u / * ~ - ’  in U = 0 for a < $ and as lnlu in U = 0 for a = $. 

Let now f~ X and Q,(x) E L p ( R 3 ,  dx)  n L“(R3, dx) ,  p > 3. Then, using (3.1) and 
the spectral theorem 

1.. = ( ( p * + G - u Q , ( x - z ( Y ) ) . t  @.(x-Z(y)lf)  
tm 

= (27r-‘/* j d t  F,(p, t)(exp(-ikot)@f, Of) 
-a, 

Now (positive constants, which may differ from place to place, are denoted by c)  

G( t )  = (exp(-ikof)Q,.t Q,f) 

dy dx dx’exp[-i(x-x’)*/2t] @[x’-Z(y+ u t ) ]  

t # 0,  (3.7)  
and, by familiar argument, based upon the properties of the Fourier transform (denoted 
by a tilde) 

I - - C / t l - 3 : 2  

xf(y+wt,x’)  . & ( x - Z ( y ) )  . f (y ,  x), 

/ G (  01 s ~ l t l - ~ ’ ~  5 d y l l 6 f b  + ut ) l l  Il@f(y)II, 

c 

~ l t l - ~ ’ ~  J dy l l~ f . (y+~t) l l , l l@f(y) l l ,  

CI  t I - 3 ’ p  II Q, I/ ; 1 dy l l f (Y + w f  1 I1 x l l f (Y)  I /  ;Y 

c l  t l - 3 ’ ~  ll@ll ;llfl12. (3 .8)  
Here / lh(y)lI ,  = ( 5  dxlh(y, ~ ) i ~ ) ” ~ ,  r - ’  =++p-’ ,  r - ’ +  s-’ = 1, r, s 2 1. It follows that 

t c C  

I ,  ?s cl/Q,ll;llfl/2 1 dtlt l-3’PImPL, t) l  

= c /I / I  ; llfl l  2 p  ’ -*, j + x  d r I f I -3/pig, ( P f ) I 

= cp3’p-2a ~ l a ) / ~ ~ / ~ f ~ / 2  1 d ~ l u l - ~ ’ ~ l g , (  U)/. 

--3c 

- X  

f l  

(3 .9)  

It is seen from (3 .5)  that (3 .9)  is integrable in *CC so that the only remaining critical 
point is L: = 0 if 0 < cy s f. cy = 4 causes no problems for p > 3,  whereas for 0 < LY < $ we 
have to require 3 / p  < 2 a .  Thus 

I, s cp 3 / p - 2 0  ll@ll;llfl12, P > 3 ,  3 / ~ < 2 a ,  (3 .10)  
which result extends to arbitrary Q, E L p  by a density argument. In particular I, vanishes 
for large p. 

--3c 
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Proposition 3.1. Suppose that V(x) E Lp(R3, dx), real, with p > 3. Then V(x - Z ( y ) )  
is K2-bounded with zero relative bound. Consequently k is self-adjoint with domain 
9(KO) .  

which implies the statement. 

This result is not optimal since we required p > 3, and among others this leaves 
out the Coulomb potential. (In fact its singularity in the origin is the root of this 
trouble since we can split the Coulomb potential in a cut-off part and a bounded tail.) 

On the other hand the decay for large p is faster than needed and indeed we can 
obtain a result, valid for p > i, by turning to the pseudo-Friedrichs extension (Kato 
1966, Faris 1975). In our case Faris’ formulation is the most convenient one. Thus 
we have to show that V ( x - Z ( y ) )  defines a bounded sesquilinear form on Q(k,), the 
form domain of ko, (9(lRol’/2), equipped with the graph norm) and that there exist 
constants a, b > 0, a < 1 such that 

/ ( V ( x - Z ( y ) ) J ; f ) l c  a ( ( I ~ o l + b ) . t f ) ,  ’jf E Q(&).  (3 .11 )  

Then the form sum k = KO+ V ( x - Z ( y ) ) + C  is self-adjoint and 9 ( k ) =  
{ f E  Q ( ~ o ) l & +  V(X-Z(Y)lfE w. 
?oposition 3.2. Suppose that V ( X ) E  Lp(R3, dx), real, with p > $  Then k = 
KO+ V(x - Z ( y ) )  define$ by the pse?do-Friedrichs extension exists as a self-adjoint 
operator on X and 9 ( K ) = { f ~  Q(K,)I{K,,+ v ( x - Z ( y ) ) } f ~ X } .  

Proof: We have to show that for p > 0 

(p”2+~Kol ’~2 ) - l l  v ( x - z ( y ) ) / [ / * ” 2 +  /ko11’2]-1 (3.12) 

is a bounded operator on X which tends to zero for large p. Since 11(p’/2+ 
~ko~’”)- ’ (p2+ ki)’/411 s 1 it is sufficient to show this for ( p 2 +  k y i 4 1  V(x - Z ( y ) ) l  X 

( p 2 +  K;)-’l4. Let now V E  L p  n L“, p > 5, so that 1 Vll” E L2p n L“, 2p > 3. For every 
f~ X, according to (3.10) with a = i, 
IW+ ki)-1/41 v ( ~  - Z ( ~ ) ) I ~ / W  

= ( ( p 2 + R ; ) - ~ ” ( X - Z ( y ) ) ~ ” 2 1 ;  IV(x-Z(y)) l ’ l2f)  

< c p 3 / 2 ~ - l  I I I  ~i~/~iit~iifii~ = c p 3 / 2 p - 1 ~ ~  V I I ~ I I ~ I I ~ ~  

and it follows that 

1 1 1  v ( ~  - ~ ( ~ ) ) l ~ / ~ ( ~ ~ +  s c p 3 / 4 p - i / 2 / ~  V I I ; ~  

1 1 ( ~ 2 +  ~ ; ) - 1 / 4 1  v ( ~  - ~ ( ~ ) ) ~ l y  c p 3 / 4 p - 1 ! 2 1 /  V I I ~  (3 .13)  

which results hold for every V E  Lp, p > i, by a density argument. Consequently (3.12) 
defines a bounded operator on X which vanishes for large p and the existence of the 
pseudo-Friedrichs extension follows. 
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It remains to consider whether 8 = 8, defined in this section (through propositions 
3.1 or 3.2) coincides with 8 = k,  defined in § 2. For V E  L p  + L“, p > 3 ,  3,, is in the 
domain of k,, and a core of k, so that k,= k,. In proposition 3 . 2  we encounter a 
larger class of potentials than that considered in § 2. Since there are no compelling 
physical reasons to consider such a larger class (it can probably be done by means of 
form techniques) we restrict ourselves to V E  L p +  L“, 2 s p s 3 .  We note that for 
f~ B,, v ( x - z ( ~ ) ) ~ E  x since ( 1  ~ ( x - ~ ( y ) ) f ( l =  (/exp(-ip.  Z ( y ) ) V ( x ) ( l  + p 2 ) - ’  x 
exp(ip.  z ( y ) ) ( l + p ’ ) f / l  s I ) ~ ( x ) ( l + p ~ ) - ’ ( ( ~ / / ( 1 + p ’ ) f ( (  < E ,  V ( x ) ( l + p 2 \ - ’  being a 
bounded operator on X. Next we observe that 9,,c 9 ( / K 0 / ” ’ )  and is a core of (Kol’ ‘. 
This follows from the boundedness of ( l+ lKol ’ ’2 ) - ’  so that it is sufficient to show 
(Kato 1966, p 166, problem 5.19) that ( 1  + 1Kol’’2)30 is dense in X. This is easily seen 
by turning to Fourier space and noting that the notio? of a core is inlvariant under 
unitary transformations. Thus 9, is in the domain of K ,  and a core of K 2  so that also 
in this case 8,= k,. 

Thus we have found that the generator k (and hence K )  can be equivalently 
defined by the construction through the propagator (in § 2) and perturbatively (in this 
section). 

4. Expressions for photoionisation 

In § §  2 and 3 we considered the matter of time evolution from an abstract viewpoint. 
Here we shall complement these results by deriving expressions for measurable quan- 
tities relevant for atomic photoionisation in terms of the resolvent of K. We shall 
however be forced to make some concessions in the way of mathematical rigour. We 
shall assume that V(x) = V,(x) + A/lx/, A real, where V,(x) is locally L2 and is O(IXI-~-‘),  
E > 0, as 1x1 + 00. The atomic wave operators (Ha‘ = ;p’+ V) 

flit= lim exp(iH”‘t) exp[-i($p2t + A  lnltl/p)], 
l + * X  

(4.1) 

then exist in the strong sense (on 2), (n:)*fllt= 1 ,  flI‘(fl”:)*c Pc, the projector 
associated with the continuum part of Hat, and for real a f l ~ t e x p ( i c u ~ p 2 ) =  
exp(iaH”‘)R”:. Suppose now that Ha‘ has bound states and that at t = 0 the state 
vector of the system is equal to some bound state 4, for instance the ground state, of 
Ha‘. Then, at  time t ,  I$( t ) )  = U (  t ,  0, y)lq5) (in this section we use Dirac notation). The 
probability of finding the electron with momentum p in A c R3 at time t is (we suppress 
y for brevity) 

wA(t,y) = ($(t)/XA(P)l$(t)? 

=(41U(t,0)*XA(P)U(t,0)Iq5) 

= (&=p(iM)fi(t, o)* exp(-iM(t))xA(p) 

=(4Iexp( ip-  2) f i ( t ,  o)*xA(P) fi(t, 0) exp(-ip- ~114)  
= ( ~ I ~ X P ( ~ P -  2) f i ~ t ,  0)*fias(t, O)XA(P)fias(t, ~ ) * f i ( t ,  0) exp(-ip. z ) I ~ ) .  

x exp( iM(t ) )  f i ( t ,  0) exp(-iM)I4) 

(4.2) 
Here xA(p) is the characteristic function on A, which equals one for p E A and vanishes 
otherwise. fia6(t, 0) = U,(?, 0) exp(-ih lnltllp) and we used the fact that exp(-iM( t ) )  
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and Uas( t ,  0) commute with xA(p) and that the contributions exp('Fi+) in exp(*iM) 
cancel. For V as above the wave operators 

~ n , ( y )  = lim f i ( t ,  0, y)* f ia s ( t ,  0, Y) (4.3) 
t - f m  

exist as strong limits (on X ) .  The additional factor exp(-iA In(tl/p) for A # O  is the 
usual Dollard correction (Dollard 1964), necessary for potentials with Coulomb tails. 
We shall moreover assume that R,(y) are unitary. This implies asymptotic complete- 
ness and 

again in the strong sense on 2. We are not aware of a mathematical proof of this 
property although one intuitively expects that an atom in a spatially homogeneous 
radiation field of the type considered will eventually ionise as time proceeds. Under 
the above assumptions (4.2) has the limit 

wdy)  = (b,lexp(ip - Z)R+xa(pNT exp(-ip * Z)b). (4.5) 

As mentioned before we consider the case that the initial phases of the fields (i.e. at 
t = 0) are randomly distributed from one measurement to another so that it makes 
sense to consider 

wA = ( 2 n ) - N  J dy wA(y) 

= ((041 exp(ip Z ( Y ) ) ~ ~ ( Y ) X ~ ( P ) R + ( Y ) *  exp(-ip. z(y))lO4)), (4.6) 

the average of wA(y) over the initial phases. ((U 1 v)) denotes the inner product in Yl, 
again in Dirac notation. For I f )  E X o  and lg) E X, (fg)) = I f ) @  lg) and on Xo (y 1 n) = 
(2n)-"' exp(in - y )  is the eigenfunction of T with eigenvalue o s  n, n E Z". For F ( y )  
a bounded operator on X, measurable and with ( l F ( y ) l l , ~  L"(RN, dy)  

(4.7) 

In this sense wA(y) is a quantity defined on a fibre in a direct integral decomposition 
of Yl, Yt= j @ X  dy, with the special property of being continuous in y (sl,(y) and RT(y) 
are continuous in y in the strong sense). In the same way as discussed by Howland 
(1974) it follows that on X in the strong sense 

A* = lim exp(ikt)  exp[ -i( Rot + A In/ t I / p ) ]  
t++m 

= l - t m  lim exp(ikt)  exp[-i(k,t+A In l t l / p ) ] ,  (4.8) 

which fact is also easily proved directly. The last line in (4.8) follows from the 
commutativity of C and the remaining parts of k and 2,. The assumed unitarity of 
sl,(y) on %' implies the unitarity of A, on X. We can express the relation between 
A* and sl,(y) by means of the direct integral 

A, = 5" dy %(Y), (4.9) 
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and instead of (4.6) we can write 

(4.10) 

(4.11) 

which has the intuitive interpretation as the amplitude for ionisation with final momen- 
tum k after the absorption of n, photons from mode 1, n, from mode 2, etc. f is a 
square integrable function of k but does not necessarily exist pointwise. 

Before proceeding we note that KO entering in (4.8) has a purely absolutely 
continuous spectrum. This can be seen from the fact that fp' has a purely absolutely 
continuous spectrum with associated spectral measure xs(fp'), S being a Bore1 set on 
the real line (we work in momentum space) and that the corresponding spectral measure 
for k0 = w * q + f p 2  is F ( S )  = Znsz\  PdS($p2+ n - 0) (Foguel 1957, P 6) which is easily 
seen to be absolutely continuous. The intertwining relations A, exp(iaK,) = 
exp( iaK)A,  and  the unitarity of A, then imply the absolute continuity of the spectrum 

For If)) E 9,, and in particular for I f ) )  = exp( -ip Z)lO4)) we have for short range 
of K. 

V (i.e. A = 0) 

ATIf))  = (1 - i jOx d t  exp(iKOt) V(x - Z ( y ) )  exp(- ik t )  If)) ) 
= (  1- i l im  E 1 0  j b ' d t e x p ~ ( - ~ + i R , ) I ] V ( x - Z ( y ) )  exp(-ikt))lf)). (4.12) 

Then, formally, 

f ( O + - +  n e  k ) =  8 n , , ( k ~ ~ ) z - i l i m  d t ( (nk/V(x-Z(y) )  
E 1 0  lo= 

xexp[ i (n -  o + f k 2 + i e  -k)t]  exp(-ip. z ) J o ~ ) )  

= &o(k I d)x 
+lim((nk/ V ( x - Z ( y ) ) ( n .  w + f k ' + i & - k ) - ' e x p ( - i p .  2)104)). (4.13) 

This expression is similar to a result obtained earlier (Muller and Tip 1984) for the 
special case of a single circularly polarised field mode. With some more handwaving 
in the direction of mathematical rigour it is possible to obtain a similar result for the 
case A f 0. Then (Ik)"'=R":k) is an atomic continuum eigenstate) 

f ( 0 4  -+ n k )  = SnO(kdtl  4) + lim ((nk"'l[ ~ ( x  - ~ ( y ) )  - ~ ( x ) ]  

E 1 0  

E 1 0  

x ( n .  w + + k 2 + i e  - R I - '  exp(-ip. z ) / o ~ ) ) ,  (4.14) 

which is a form of the 'two-potential' formula. It also holds for short range V ( A  = 0). 
As indicated a number of assumptions have not been rigorously justified. The 

first, and physically most interesting, is the unitarity of the wave operators. The 
others are the transition from the expressions involving wave operators to those 
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containing the resolvent of K and the existence of the limits E LO in (4.13) and (4.14). 
We expect that the latter can be handled by an extension of the limiting absorption 
principle to quantities on X since V ( x - 2 )  (or V ( x - 2 )  - V ( x ) )  and 4 have decay 
properties for large 1x1. 

f(O4 + n k )  = 

Instead of (4.13) we can write 

k 14) + lim (( nkl exp( -ip - 2) V ( x )  
€10 

. ( n .  o + $ k 2 + $ A ( y ) 2 + i s -  K)-’IO4)) (4.15) 

by performing a unitary transformation. The advantage is that, for dilatation analytic 
V ( x ) ,  K has dilatation analytic properties in the single mode case (Graffi et a1 1984, 
Graffi 1984, Howland 1983). 

In the multi-mode case with incommensurate U, there is a dense set of thresholds 
(for k, the points n w, II E Z N )  so that dilatation theory becomes problematic. The 
reason is the fact that T is not bounded from below. If we truncate T so that its 
truncated form is bounded from below the situation improves. This is physically quite 
reasonable since it means that high-order processes involving the absorption of large 
numbers of photons are neglected which is often justified. In the case where all U, 

are commensurate the thresholds become evenly spaced but the fact that they are 
infinitely degenerate still prevents the development of a dilatation theory (no compact- 
ness properties) so that here again a truncation is necessary. Equation (4.14) can be 
transformed in a similar way and the same remarks apply. After truncation a dilatation 
theory can be developed in both cases and by making a Feshbach decomposition as 
in Muller and Tip (1984) an approximate description of the energy spectrum of the 
photoionised electrons can be given along the same lines. 

We end this section by noting that in two special cases truncation is not needed. 
The first is that of a fundamental frequency with correlated harmonics where only a 
single pair { y ,  q }  appears and the second is that where all mode frequencies coincide. 
Then a transformation can be made so that only a single q, appears in K. In both 
cases we are essentially back to the single-mode situation. 

5. Discussion 

In the present paper we have given a general framework for one-electron atoms in a 
spatially homogeneous multi-mode radiation field. We showed that by introducing a 
larger Hilbert space the time evolution can be given in terms of a constant generator 
K and we found that K can be defined perturbatively, the atomic potential V(x) being 
the perturbation. We obtained an expression for photoionisation amplitudes under 
the plausible assumption of unitarity of the relevant wave operator. An actual proof 
of this property seems to be an open problem which is quite interesting from a physical 
point of view. Disregarding some mathematical subtleties we expressed these ampli- 
tudes in terms of the resolvent of K .  In an earlier investigation, concerning a single 
circularly polarised radiation mode, we started from a similar expression for a descrip- 
tion of the energy spectrum of the photoionised electron. The same can be done for 
a single field mode in the present case but in the multi-mode situation the procedure 
breaks down due to problems with dilatation analyticity and analytic continuation. 
The reason is the lack of boundedness from below of the spectrum of K (which is 
typical for semiclassical theories of the type discussed here). In fact this problem is 
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absent in a second quantised version. Such a theory was developed by Grossmann 
and Tip (1980) for hydrogen in a single quantised field mode, where dilatation 
analyticity of the corresponding Hamiltonian was established. This formalism is easily 
extended to a finite number of field modes and a more general dilatation analytic 
potential V ( x ) .  The main difference with the present formalism is that instead of T 
we then encounter a sum of harmonic oscillator Hamiltonians and we have boundedness 
from below. Since the semiclassical formalism is usually thought to be a limiting form 
of the second quantised one, valid in the case of initial field states containing many 
photons and for processes where only relatively few photons are absorbed this raises 
the question whether a careful consideration of the limiting process can lead to a 
description with a cut-off in the spectrum of T, restoring the semi-boundedness. The 
advantage of the semiclassical approach, on the other hand, is that a direct numerical 
integration of the original Schrodinger equation (with time-dependent Hamiltonian) 
can be performed. 

Another model that is often used is that of fields that are switched off for large 
1 r 1, typically 

A(  2 )  = A exp( - y t 2 )  cos wr. (5.1) 

Such fields, and in fact even more general ones, including fields depending both on x 
and r, were considered by Gesztesy er a1 (1985). These authors proved unitarity for 
the wave operators associated with the full Hamiltonian and the atomic Hamiltonian. 
Their situation is, however, different from the one considered in the present paper, 
since in their case the field is asymptotically absent. For fields of the type (5.1) the 
unitarity proof is rather simple due to exp(-yt2) which can be used to advantage in 
Cook-type estimates. One might ask the question why sinusoidal fields are considered 
at all instead of (5.1). The reason is that the additional symmetry due to the periodicity 
gives rise to a simpler spectral structure. Also experimental circumstances are usually 
such that the field can be assumed to be sinusoidal during the period of time that the 
actual ionisation process takes place. There are, however, subtle effects, related to 
a rise in the ionisation potential in combination with a ponderomotive energy gain by 
the electron leaving the field region (fora general discussion see, for instance, Tip (1984)). 

By replacing (5.1) by exp[ - y(  t + y,)’] cos( or + y 2 )  we can again introduce a gen- 
erator K on a larger space X where now y ,  in principle ranges from --CO to +-CO. It 
would then be interesting to consider the limit where y becomes small in connection 
with adiabatic behaviour. 
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